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Abstract

Few-shot learning which aims to generalize knowl-
edge learned from annotated base training data to
recognize unseen novel classes has attracted con-
siderable attention. Existing few-shot methods rely
on completely clean training data. However, in
the real world, the training data are always cor-
rupted and accompanied by noise due to the dis-
turbance in data transmission and low-quality an-
notation, which severely degrades the performance
and generalization capability of few-shot models.
To address the problem, we propose a unified peer-
collaboration learning (PCL) framework to extract
valid knowledge from corrupted data for few-shot
learning. PCL leverages two modules to mimic
the peer collaboration process which cooperatively
evaluates the importance of each sample. Specif-
ically, each module first estimates the importance
weights of different samples by encoding the in-
formation provided by the other module from both
global and local perspectives. Then, both modules
leverage the obtained importance weights to guide
the reevaluation of the loss value of each sample.
In this way, the peers can mutually absorb knowl-
edge to improve the robustness of few-shot models.
Experiments verify that our framework combined
with different few-shot methods can significantly
improve the performance and robustness of origi-
nal models.

1 Introduction
Few-shot Learning (FSL) aims to mimic humans to learn a
new concept with limited examples [Chen et al., 2019; Chen
et al., 2021]. In order to obtain the human-like capability,
few-shot learner first learns profound knowledge from base
training dataset and generalizes the knowledge to recognize
novel unseen classes with a few examples [An et al., 2021;
Jian and Torresani, 2022]. Since few-shot learning was pro-
posed, it has been widely studied and applied in various fields
including medical analysis [Wang et al., 2022a], drug discov-
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ery [Zeng et al., 2022], remote sensing [Zhang et al., 2023],
robotics [Li et al., 2022], etc.

The existing few-shot methods generally assume that base
training data are fully clean and intact without considering
possible corruption in training data [Wang et al., 2021; Ma
et al., 2022a]. However, such an assumption is hard to meet
in real application scenarios. In the real world, due to low-
quality annotations with ambiguous images [Xue et al., 2019;
Tsipras et al., 2020] and accidental channel disturbances in
online transmission [Shi et al., 2010], data corruption in-
evitably exists in the training data. When trained on these
data, these methods easily overfit the corrupted data, which
degrades the performance of original models [Li et al., 2019].
Therefore, how to identify the valid information from these
corrupted data is of great significance for few-shot learning.

Many studies are devoted to reducing the disturbances of
these corrupted data. One line is using noise transition ma-
trix that models the relationship between latent clean la-
bels and observed noisy labels by a transition matrix to re-
cover the latent correct label [Bekker and Goldberger, 2016;
Zhu et al., 2022; Cheng et al., 2022]. The other line is sam-
ple selection that evaluates each sample with noise estima-
tor [Jiang et al., 2018; Han et al., 2018; Wang et al., 2022b;
Xia et al., 2022]. However, these methods are limited to noise
identification without considering the model generalization,
which violates the original intention of few-shot learning.
In the meantime, some recent studies are devoted to im-
proving the robustness of few-shot models [Lu et al., 2021;
Mazumder et al., 2021; Liang et al., 2022; An et al., 2023].
However, they still rely on a clean base training dataset
and artificially introduce known pseudo-noise data during the
training process, which is far from mirroring the real world.

To address the above problems, we propose peer-
collaboration learning (PCL) to learn from corrupted base
class data for few-shot learning. Rather than designing a spe-
cific method, in this paper, we propose a model-agnostic PCL
framework that can be applied to different few-shot meth-
ods to alleviate the impact of data corruption in base train-
ing dataset. Our work is inspired by the peer collaboration
of human behavior that students in pairs cooperatively scruti-
nize the quality of each one’s work and co-construct solutions
to dilemmas which increases the cognition of both peers and
makes the evaluation more reliable [Ceci and Peters, 1982;
Fawcett and Garton, 2005; Van Meter and Stevens, 2000;
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Figure 1: Architecture of the Peer-Collaboration Learning Framework.

Kuhn, 2015]. To mimic the peer collaboration process, PCL
leverages two interactive modules to learn from different per-
spectives and collaboratively evaluate the corrupted data so
as to enhance the reliability of few-shot models. The two
modules share a common feature extractor, and have indi-
vidual groups of classification model constructor and sample
importance extractor. During the training stage, each mod-
ule obtains features and loss values of the training samples in
its corresponding latent spaces with its classification model
contractor, and conveys the training information to the other.
Then, each module leverages the sample importance extrac-
tor to extract the sample importance weights by encoding the
training information provided by the other module from both
global and local aspects. Subsequently, the loss values of
samples can be reevaluated with the obtained sample impor-
tance weights and utilized for the training process of each
module. In this way, few-shot models can automatically and
efficiently identify the importance of different samples and
mitigate the impact of data corruption. In the testing stage,
PCL synthesizes the outputs of the two modules and obtains
the final prediction.

Our key main contributions can be summarized as follows:

• We present a unified peer-collaboration learning (PCL)
framework for few-shot learning with corrupted data.
PCL is a model-agnostic framework that can be plugged
into various few-shot methods to improve the robustness
of these models.

• We design peer-collaboration learning inspired by the
peer collaboration of human behavior. PCL leverages
two modules to interactively learn from different per-
spectives and collaboratively evaluate different types of
corrupted data.

• We design a novel peer-collaboration mechanism in
PCL. This mechanism extracts the sample importance
information from both global and local aspects by en-

coding the feature representations and the corresponding
loss values of the training samples.

• We verify the superiority and robustness of PCL through
experiments. The experimental results verify that PCL
can significantly improve the performance of few-shot
methods with various corrupted data.

2 Related Work
Few-Shot Learning. In general, the few-shot method [Ye
et al., 2020; Yu et al., 2022] can be divided into two types:
optimization-based method and metric-based method. The
optimization-based method is to find a single set of model
parameters that can be adapted with a few steps of gradi-
ent descent to individual tasks [Finn et al., 2017; Oh et al.,
2021]. The idea of the metric-based method is to lever-
age similarity information between images to classify novel
classes with few examples [Kang et al., 2021; An et al., 2023;
Ma et al., 2022b]. MatchingNet [Vinyals et al., 2016] uses
the attention mechanism and memory to acquire the ability
to quickly learn new concepts. ProtoNet [Snell et al., 2017]
utilizes the idea of K-means to take the average embeddings
of samples with the same class as the prototype of the class.
DeepEMD [Zhang et al., 2020] leverages the set of local de-
scriptors as the representation for an image adopts the Earth
Move’s Distance to calculate the distance between represen-
tations of two images. However, due to ubiquitous data cor-
ruption, these methods might easily overfit the noise, which
inevitably causes the severe degradation of performances.
Noise. Noise is an important problem in machine learn-
ing. One promising way is the sample selection. Decou-
pling [Malach and Shalev-Shwartz, 2017] trains two net-
works concurrently, and then updates models only using the
instances that have different predictions from these two net-
works. Co-teaching [Han et al., 2018] trains two networks,
the clean samples selected by each network are used to train
the other. Meta-Weight-Net adaptively learns an explicit
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weighting function from data [Shu et al., 2019]. CNLCU
[Xia et al., 2022] adopts interval estimation instead of point
estimation of losses to select samples. Our framework com-
bines the advantages of Co-training in [Jiang et al., 2018;
Han et al., 2018], incomplete-dependence of small loss trick
in [Xia et al., 2022] and dynamic loss weighting in [Shu et
al., 2019] while replacing discarding samples with weight-
ing functions and encoding the local and global information
to the improve the evaluation of corrupted data for few-shot
models.
Few-Shot Learning with Noise. There are only a few works
that focus on few-shot learning with noise. [Lu et al., 2021]
proposes a BiLSTM-based attentive module to weigh sup-
port samples and form a robust prototype for each class.
[Mazumder et al., 2021] combines data augmentation with
soft k-means clustering to refine class prototypes. [Liang et
al., 2022] develops a transformer-based attentive module to
aggregate support samples into class representations. It is
worth noting that these methods require an auxiliary clean
set, which may not be available in real-world scenarios.

3 Methodology
3.1 Preliminary
Few-Shot Learning. We define the problem to be solved in
this paper as follows. The training dataset and testing dataset
are represented by Dtr and Dte respectively. In the training
stage, the training dataset Dtr = {Ti}Ii=1 is defined as a set
of tasks which are sampled from base classes Cb. Each task Ti
contains a support set Si and a query set Qi. The support set
Si is composed of N×K samples that K samples for each N
classes randomly selected from all classes of Dtr. The query
set Qi is composed of N×M samples that have the same
classes as Si but is disjoint from Si. The model is trained
by randomly selecting tasks from the task set {Ti}Ii=1. In the
testing stage, the testing dataset Dte = {T ∗

i }
I∗

i=1 is samples
from novel class Cn (Cn

⋂
Cb = ∅), from which a new task

T ∗
i = {S∗

i , Q
∗
i } is sampled. The goal of each few-shot task

is to estimate the class of samples in the query set Q∗
i with

support set S∗
i .

Data Corruption. In this paper, we mainly consider the fol-
lowing two data corruption: (i) Sample corruption. In the
training stage, feature noise might exist in Dtr. We con-
sider feature noise as an image of random pixels with uni-
form distribution [Boncelet, 2009] to model sample corrup-
tion in channel impairments. (ii) Label corruption. In the
training stage, label noise might exist in Dtr. We consider
label noise as a mislabeled image to model label corruption
in low-quality annotations.

3.2 Peer-Collaboration Learning Framework
The peer-collaboration learning (PCL) framework aims to al-
leviate the impact of the noise that may exist in base training
data on few-shot models. Inspired by the peer collaboration
of human behavior which increases the cognition for both
peers and makes the evaluation more reliable [Ceci and Pe-
ters, 1982; Fawcett and Garton, 2005; Van Meter and Stevens,

2000; Kuhn, 2015], PCL leverages two modules to collabo-
ratively learn from different perspectives to increase the ca-
pability to discriminate the noise. Specifically, the two mod-
ules share a common feature extractor, and have individual
groups of classification model constructor and sample impor-
tance extractor. Through a novel peer-collaboration mech-
anism, each module extracts the importance information of
different samples generated by the other from both global and
local aspects. Then, each module adopts the importance in-
formation of different samples to guide its own update. In
this way, few-shot models can automatically identify the im-
portance of different samples and filter the noise.

As illustrated in Figure 1, PCL trains two different mod-
ules simultaneously. The two modules shared a common fea-
ture extractor H and each module has a dividual classifica-
tion model constructor F and a sample importance extrac-
tor G. We denote the two modules as f1 and f2. When
processing task T = {S,Q}, f1 and f2 first construct the
classification modelsF1 (H(S)) andF2 (H(S)) according to
the support set S by classification model constructor F1 and
F2, and then calculate the loss values L1(Q) (correspond-
ing to F1 (H(S))) and L2(Q) (corresponding to F2 (H(S)))
relative to the query set Q. Then, the sample information
and loss information of both modules are conveyed to each
other. Subsequently, the importance values of different sam-
ples are calculated by the sample importance extractor G1 and
G2. Details of the peer-collaboration mechanism are given in
the next section. Then the reevaluated loss values can be ob-
tained:

L1 = − 1

M

M∑
m=1

(G1(Q,L2 (Q))m · L1 (qm)) , (1)

L2 = − 1

M

M∑
m=1

(G2(Q,L1 (Q))m · L2 (qm)) , (2)

where qm is the m-th sample in the query set Q.
In PCL, two models are individual equally without bias

and simultaneously trained with the same data. In the test-
ing stage, PCL synthesizes the outputs of the two mod-
els F1 (H(S)) and F2 (H(S)) to obtain the final prediction.
Given q∗ as the query sample to be predicted, PCL adopts the
simple but effective strategy (mean between two models) to
yield more robust results inspired by ensemble learning

Predq∗ =
1

2
[Softmax (F1 (H (S)) (q∗) /τ)

+ Softmax (F2 (H (S)) (q∗) /τ)]
, (3)

where F1 (H(S)) (q∗) and F2 (H(S)) (q∗) are the output
logits of classification models, τ is the temperature parameter
for better integrating the predicted values of the two modules.

3.3 The Peer-Collaboration Mechanism
PCL uses a novel peer-collaboration mechanism to automati-
cally identify the contributions of different samples for model
parameter updating. Generally, different classifiers can gen-
erate different decision boundaries. The purpose of PCL is
to take advantage of the collaboration of different modules to
evaluate the importance of each sample and make the evalua-
tion more reliable.
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Classification Model Constructing
The goal of classification model constructor is to map the fea-
ture extracted by H into different spaces and construct clas-
sification models in these spaces. Inspired by [Perez et al.,
2018] to improve the generalization of FSL models in differ-
ent spaces, we leverage the mapping function ĥ to map the
feature:

ĥ(S) = H(S)+δ1 (ReLU (δ2 (h(S))�H(S) + δ3 (h(S)))) ,
(4)

where ĥ(S) is the mapped feature, � indicates the hadamard
product, ReLU denotes the ReLU function [Glorot et al.,
2011], h(S) = BN (δ4 (ReLU (H(S)))) and BN is the batch
normalization operation [Ioffe and Szegedy, 2015], δ1, δ2,
δ3 and δ4 are different linear mappings. After obtaining the
mapped features of different spaces, PCL can construct the
classification modelsF1 (H(S)) andF2 (H(S)) according to
the specific few-shot methods. For query samples Q, the fea-
ture is first mapped into the same space as the classification
model:

ĥ(Q) = H(Q)+δ1 (ReLU (δ2 (h(Q))�H(Q) + δ3 (h(Q)))) ,
(5)

where h(Q) = BN (δ4 (ReLU (H(Q)))). Then the loss value
of Q can be obtained according to the loss function of the
specific few-shot models.

Sample Importance Extracting
Since the type of data corruption is unknown, we consider
two aspects of importance weighting, i.e., global weighting
and local weighting. Concretely, global weighting leverages
the corresponding loss of all query samples to encode their
relative relationship, and then uses the encoding values to
weight these samples. By comparing the relative relation-
ship of the query samples from the global perspective, the
impact of potential noise could be effectively eliminated. Lo-
cal weighting encodes the query samples that may contain
noise within each class. For a specific class, through obtain-
ing and leveraging the relationship of potential samples with
the same class, the impact of confusing samples can be effec-
tively degraded. We take G1 as an example to introduce the
two weighting approaches in detail. The calculation process
of G2 is similar to G1.
Global Weighting. First, PCL calculates the loss value
L2(Q) of each sample in the query set Q for model
F2 (H(S)), and then sorts them to obtain the ranking of dif-
ferent samples. Then, PCL leverages the ranking information
to reform the query samples as a sequence of ordered samples
Q̂. Subsequently, PCL adopts a linear mapping to transform
the samples to the latent embedding values, and then uses
BiLSTM parameterized by φB to encode the embedding val-
ues of the query samples to leverage the content-based atten-
tion capability of BiLSTM to weight different query samples.
Specifically, The forward pass for encoding the sequence of
ordered samples Q̂ can be given by

dj , ej = BiLSTM
(
Q̂j , dj−1, ej−1 |φB

)
, (6)

where d and e denote the hidden and cell state vectors inside
BiLSTM respectively and Q̂j is the j-th feature vector in Q̂.

Similarly, we can attain the backward pass lj , oj . We use a
multi-layer neural network followed by a softmax layer de-
noted by ψ1 to achieve the global weighting:

W (g) = ψ1 (C (C (d1, l1) , · · · , C (dNM , lNM ))) , (7)

where C denotes the concatenation operation and NM are
N ×M query samples in Q̂.
Local Weighting. The core idea of local weighting is to
leverage the intra-class correlation of query samples to iden-
tify possible noises. For the N -way task, for each sample, we
construct a local correlation vector composed of all correla-
tion scores between a sample and its M same labeled query
samples, which represents the feature correlation between the
sample and its corresponding class. Then, for each class, the
correlation matrix can be obtained. Take class n for example,
the correlation matrix P (n) ∈ RM×M reveals the whole cor-
relation between samples labeled with class n and the class
n. Specifically, cosine similarity of paired features obtained
from the other module is calculated as each corresponding
element in Pn:

P
(n)
i,j = cos

(
ĥ
(
q
(n)
i

)
, ĥ
(
q
(n)
j

))
, (8)

where P (n)
i,j denotes the correlation between the mapped fea-

tures ĥ
(
q
(n)
i

)
and ĥ

(
q
(n)
j

)
corresponding to the i-th and j-

th query samples labeled with n.
The self-attention mechanism of transformer is an effec-

tive way to leverage the similarities between different sam-
ples. Therefore, we use the transformer layer [Vaswani et al.,
2017] to encode the correlations among samples. Since sam-
ple order in a class is arbitrary, we direct input the correlation
matrix P (n) ∈ RM×M into the transformer layer without po-
sitional encoding:

On = Transformer
(
P (n) |φT

)
. (9)

where φT is the parameters of the transformer layer. Then
a multi-layer neural network followed by a M -way softmax
layer is used to achieve the local weight vector W (l) for sam-
ples labeled with n:

W (l) = ψ2 (On) . (10)

where ψ2 is the combination of the multi-layer neural net-
works and the softmax layer.

After obtaining both global weighting and local weighting
for the query set Q, the peer-collaboration weight can be ob-
tained by

G1(Q,L2 (Q)) =W
(g)

+W
(l)

. (11)

4 Experiments
In this section, the effectiveness of PCL is verified by var-
ious experiments. Four typical few-shot methods including
MatchingNet [Vinyals et al., 2016], ProtoNet [Snell et al.,
2017], S2M2 [Mangla et al., 2020] and DeepEMD [Zhang et
al., 2020] are selected to compare with our PCL-based ver-
sions. Four methods that deal with noise with two interactive

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3426



Algorithm CIFAR-FS CUB mini-ImageNet tiered-Imagenet

MatchingNet 68.93±0.74 74.88±0.66 62.75±0.75 60.74±0.81
PCL-MatchingNet (Ours) 70.63±0.76 (+1.70) 78.73±0.69 (+3.85) 63.78±0.68 (+1.03) 62.98±0.77 (+2.24)

ProtoNet 68.78±0.77 74.68±0.70 64.69±0.69 61.50±0.74
PCL-ProtoNet (Ours) 74.47±0.73 (+5.69) 79.35±0.68 (+4.67) 66.83±0.74 (+2.14) 63.80±0.77 (+2.30)

S2M2 71.01±0.74 78.06±0.68 64.70±0.66 63.53±0.76
PCL-S2M2 (Ours) 75.69±0.74 (+4.68) 81.46±0.66 (+3.40) 66.82±0.71 (+2.12) 66.82±0.74 (+3.29)

DeepEMD 73.02±0.74 79.07±0.64 68.88±0.65 66.66±0.78
PCL-DeepEMD (Ours) 77.69±0.67 (+4.67) 84.13±0.54 (+5.06) 70.31±0.69 (+1.43) 69.94±0.81 (+3.28)

Table 1: Results on few-shot learning tasks with clean samples (Acc. %). All accuracy results are averaged over 600 test episodes with 95%
confidence intervals. The relative accuracy gains with the introduction of PCL are highlighted in bold.

Noise rate Algorithm CIFAR-FS CUB mini-ImageNet tiered-Imagenet

20%

MatchingNet 61.89±0.80 71.51±0.76 58.99±0.71 57.86±0.74
PCL-MatchingNet (Ours) 66.29±0.83 (+4.40) 77.25±0.70 (+5.74) 61.47±0.67 (+2.48) 59.45±0.72 (+1.59)

ProtoNet 64.21±0.83 70.44±0.70 60.70±0.74 60.07±0.86
PCL-ProtoNet (Ours) 69.42±0.79 (+5.21) 77.69±0.69 (+7.25) 64.73±0.68 (+4.03) 63.32±0.73 (+3.25)

S2M2 69.10±0.77 77.11±0.69 62.47±0.70 61.90±0.78
PCL-S2M2 (Ours) 75.54±0.74 (+6.44) 78.92±0.64 (+1.81) 65.45±0.70 (+2.98) 63.75±0.76 (+1.85)

DeepEMD 71.94±0.72 78.87±0.64 67.45±0.68 63.78±0.77
PCL-DeepEMD (Ours) 75.01±0.74 (+3.07) 80.73±0.62 (+1.86) 69.25±0.68 (+1.80) 68.93±0.82 (+5.15)

40%

MatchingNet 58.39±0.77 64.77±0.78 55.82±0.70 53.79±0.74
PCL-MatchingNet (Ours) 60.66±0.78 (+2.27) 69.82±0.74 (+5.05) 57.96±0.66 (+2.14) 55.59±0.78 (+1.80)

ProtoNet 60.88±0.82 66.26±0.71 56.00±0.71 53.97±0.76
PCL-ProtoNet (Ours) 62.98±0.85 (+2.10) 72.58±0.72 (+6.32) 61.32±0.70 (+5.32) 58.45±0.76 (+4.48)

S2M2 67.41±0.79 74.41±0.70 61.63±0.71 60.89±0.79
PCL-S2M2 (Ours) 69.07±0.75 (+1.66) 78.67±0.66 (+4.26) 62.74±0.69 (+1.11) 63.59±0.76 (+2.70)

DeepEMD 71.67±0.71 77.98±0.62 66.37±0.66 62.55±0.76
PCL-DeepEMD (Ours) 74.96±0.73 (+3.29) 80.41±0.62 (+2.43) 67.95±0.67 (+1.58) 66.52±0.80 (+3.97)

Table 2: Results on few-shot learning tasks with 20% & 40% feature noise (Acc. %). All accuracy results are averaged over 600 test episodes
with 95% confidence intervals. The relative accuracy gains with the introduction of PCL are highlighted in bold.

modules including Decoupling [Malach and Shalev-Shwartz,
2017], Co-teaching [Han et al., 2018], Co-teaching+ [Yu et
al., 2019] and JoCoR [Wei et al., 2020] are selected to verify
the performance of PCL in dealing with noisy problems. Four
standard few-shot learning datasets, CIFAR-FS [Bertinetto et
al., 2019], CUB [Wah et al., 2011], mini-ImageNet [Vinyals
et al., 2016] and tiered-ImageNet [Ren et al., 2018] are se-
lected to test the performance of the compared methods.
All the computations are performed on a GPU server with
NVIDIA Tesla V100, Intel Xeon Gold 6240 CPU 2.60 GHz
processor, and 32 GB GPU memory. Our code is available at
https://github.com/anyuexuan/PCL.

4.1 Network Structure and Parameters
For fair comparisons, we implement all methods by Py-
Torch. All algorithms use the four-block-based ConvNet
model (C64E) [Chen et al., 2019] as the backbone and the
feature embedding dimension is set to 1600. In C64E, each
block is comprised of 64-channel 3 × 3 convolution, batch
normalization [Ioffe and Szegedy, 2015], ReLU nonlinearity
[Glorot et al., 2011], and 2 × 2 max-pooling. The feature

embedding dimension is set to 1600. The Adam optimizer
[Kingma and Ba, 2015] is used by all methods to optimize pa-
rameters. The learning rate is set to 10−3 for all algorithms.
The temperature parameter τ in Eq.(3) is set to 2 for PCL-
MatchingNet, 64 for PCL-ProtoNet, 0.05 for PCL-S2M2 and
0.05 for PCL-DeepEMD, respectively. The maximum num-
ber of training episodes is set to 40000. Moreover, to pre-
vent the model from incorrectly ignoring the clean samples in
early training, we add a small constant which is set to 0.2 to
the peer-collaboration weight during the first 20000 episodes.

4.2 Comparison with Clean Data
To verify the versatility of PCL, we compare the performance
of different methods on few-shot learning tasks with clean
samples. We compare vanilla MatchingNet, ProtoNet, S2M2
and DeepEMD with our corresponding PCL-based methods.
Table 1 gives performance comparisons under the 5-way 5-
shot setting. For each comparison, the relative accuracy gains
with the introduction of PCL are highlighted in bold. We can
find that, for all original few-shot methods, the introduction
of PCL can ameliorate the model performance obviously. In
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Noise rate Algorithm CIFAR-FS CUB mini-ImageNet tiered-Imagenet

20%

MatchingNet 67.02±0.73 73.04±0.76 61.01±0.70 59.98±0.80
PCL-MatchingNet (Ours) 69.79±0.79 (+2.77) 77.68±0.66 (+4.64) 62.40±0.73 (+1.39) 61.78±0.73 (+1.80)

ProtoNet 65.69±0.79 73.70±0.70 61.39±0.74 58.66±0.76
PCL-ProtoNet (Ours) 73.03±0.78 (+7.34) 79.03±0.63 (+5.33) 66.02±0.70 (+4.63) 63.22±0.77 (+4.56)

S2M2 69.67±0.76 77.16±0.71 63.86±0.68 61.08±0.77
PCL-S2M2 (Ours) 74.67±0.73 (+5.00) 80.20±0.65 (+3.04) 65.63±0.70 (+1.77) 65.82±0.74 (+4.74)

DeepEMD 72.55±0.72 78.41±0.63 67.58±0.67 66.00±0.77
PCL-DeepEMD (Ours) 77.28±0.70 (+4.73) 83.66±0.55 (+5.25) 68.70±0.72 (+1.12) 68.95±0.75 (+2.95)

40%

MatchingNet 60.98±0.75 71.31±0.73 56.70±0.72 57.46±0.77
PCL-MatchingNet (Ours) 64.28±0.80 (+3.30) 74.99±0.68 (+3.68) 60.74±0.68 (+4.04) 58.51±0.71 (+1.05)

ProtoNet 61.44±0.79 70.70±0.72 57.48±0.69 55.10±0.78
PCL-ProtoNet (Ours) 65.14±0.80 (+3.70) 74.70±0.69 (+4.00) 62.75±0.69 (+5.27) 59.64±0.80 (+4.54)

S2M2 69.03±0.78 75.30±0.68 62.70±0.71 60.59±0.79
PCL-S2M2 (Ours) 70.99±0.97 (+1.96) 79.54±0.68 (+4.24) 64.38±0.67 (+1.68) 62.44±0.77 (+1.85)

DeepEMD 71.88±0.71 77.56±0.68 66.28±0.69 65.67±0.79
PCL-DeepEMD (Ours) 74.39±0.74 (+2.51) 79.90±0.66 (+2.34) 67.64±0.68 (+1.36) 66.69±0.77 (+1.02)

Table 3: Results on few-shot learning tasks with 20% & 40% label noise (Acc. %). All accuracy results are averaged over 600 test episodes
with 95% confidence intervals. The relative accuracy gains with the introduction of PCL are highlighted in bold.

Algorithm
Feature noise Label noise

Noise rate=20% Noise rate=40% Noise rate=20% Noise rate=40%

ProtoNet 60.70±0.74 56.00±0.71 61.39±0.74 57.48±0.69

• Case 1: single module 61.77±0.73 58.44±0.72 62.18±0.68 60.87±0.71
• Case 2: independent training 63.02±0.71 60.20±0.73 63.67±0.73 61.28±0.70
• Case 3: without global weighting 63.44±0.67 57.01±0.73 64.97±0.72 58.59±0.72
• Case 4: without local weighting 63.15±0.75 60.41±0.72 64.26±0.68 61.32±0.72

Ours 64.73±0.68 61.32±0.70 66.02±0.70 62.75±0.69

Table 4: Results on few-shot learning tasks under different cases with various noise (Acc. %). All accuracy results are averaged over 600 test
episodes with 95% confidence intervals.

most cases, PCL can improve the model performance by a
large margin, which illustrates the validity and versatility of
PCL in few-shot learning tasks.

4.3 Comparison with Corrupted Data
In this section, we consider the following two settings of data
corruption: (i) Sample corruption. Each sample has a prob-
ability of sample corruption by replacing the sample with
noise of random pixels of uniform distribution, which is an
extremely noisy situation. (ii) Label corruption. Each sample
has a probability of label corruption by replacing the sample
with label noise that is a random image sampled from other
classes In the experiment, for the training stage, we set the
value of this probability to 20% and 40%, i.e., 20% and 40%
feature noise rate or label noise rate.

Comparisons on Sample Corruption
We compare the performances of different methods in few-
shot learning tasks with various rates of feature noise. Ta-
ble 2 tabulates the results of different methods on few-shot
learning tasks with 20% and 40% feature noise. For each
comparison, the relative accuracy gains with the introduction

of PCL are highlighted in bold. From Table 2, we can find
that when feature noise exists in the training set, the perfor-
mance of four vanilla methods severely decreases, especially
in MatchingNet and ProtoNet which are trained on noisy Dtr

from scratch (S2M2 and DeepEMD should be pre-trained on
clean Dtr). Our PCL-based methods can maintain the per-
formance to some extent compared with the results on origi-
nal clean data. The experimental results show that the intro-
duction of PCL can significantly enhance the robustness and
adaptability of few-shot methods faced with feature noise.

Comparisons on Label Corruption
Table 3 tabulates the performance of different methods in
few-shot learning tasks with various rates of label noise. For
each comparison, the relative accuracy gains with the intro-
duction of PCL are highlighted in bold. In label corruption,
our PCL-based methods still display their outstanding perfor-
mances. From Table 3, we can find that when label noise ex-
ists in the training set, the performance of four vanilla meth-
ods severely decreases while our PCL-based methods still
maintain the performance to some extent compared with the
results on original clean data. Besides, the PCL framework
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Figure 2: Comparisons among different methods dealing with noise.

can significantly improve the performance of vanilla models
and surpass them by a large margin. The experimental results
show that the introduction of PCL can significantly enhance
the robustness of vanilla few-shot methods faced with label
noise. In general, our PCL is a versatile and robust frame-
work that can plug in different few-shot methods to improve
the model performances in different scenarios.

4.4 Comparison with Existing Methods Dealing
with Noise

To illustrate the advantages of PCL over existing methods
that deal with noise in few-shot learning tasks, we select four
methods for comparisons including Decoupling [Malach and
Shalev-Shwartz, 2017], Co-teaching [Han et al., 2018], Co-
teaching+ [Yu et al., 2019] and JoCoR [Wei et al., 2020],
which leverage two modules to learn interactively in the noisy
environments. All methods are combined with prototype
classifier for fair comparisons on mini-ImageNet. Moreover,
vanilla ProtoNet is also adopted as the baseline method.

Figure 2 illustrates the performances of all methods in few-
shot learning tasks with clean data, 20% feature noise, 40%
feature noise, 20% label noise and 40% label noise, respec-
tively. From Figure 2, we can find that: 1) when dealing with
few-shot learning tasks with clean data, existing methods that
deal with noise cannot always improve the performance of
vanilla ProtoNet, while our PCL-ProtoNet outperforms all the
compared methods by a large margin; 2) when dealing with
few-shot learning tasks with corrupted data, the performances
of existing methods that deal with noise are even worse than
vanilla ProtoNet algorithm in many cases, while our PCL-
ProtoNet achieves the best results in all cases. These ob-
servations illustrate that existing methods dealing with noise
are not effective when handling few-shot learning tasks since
they might be limited to noise identification without consid-
ering the model generalization. On the contrary, our PCL
can effectively combine with existing few-shot methods to
improve model performance. Through the peer-collaboration
mechanism, both robustness and generalization ability can be
promoted effectively.

4.5 Ablation Study
For a comprehensive understanding of our model, we fur-
ther design four cases to evaluate the effectiveness of global

weighting, local weighting and the peer-collaboration mech-
anism with sample corruption and data corruption on mini-
ImageNet dataset. For each noise situation, we also add two
degrees of noise rate, i.e., 20% and 40% in the base training
datasets.

• Case 1: A single module with both global weighting and
local weighting.

• Case 2: Each module is trained independently without
leveraging losses and features from the other module.

• Case 3: Two modules are trained without global weight-
ing, i.e., remove the global weighting term in Eq.(11).

• Case 4: Two modules are trained without local weight-
ing, i.e., remove the local weighting term in Eq.(11).

Table 4 illustrates the performance of different cases. For
each comparison, the best result is highlighted in bold. From
Table 4, we can notice that: 1) The performances of the model
using a single module with global and local weightings are
better than the vanilla ProtoNet in all cases, which demon-
strates the effectiveness of the proposed weighting method;
2) Performance drops can be observed when the module in-
teraction is removed, which illustrates the effectiveness of
the collaboration; 3) Both global weighting and local weight-
ing is beneficial for improving the performance of the model.
When the noise rate is relatively small (20%), local weighting
is more important since it can effectively extract and leverage
the local correlation among samples to identify noise. When
the noise rate is relatively large (40%), the local correlation
of samples is easily disturbed, and global weighting is more
important because it can weigh the importance of different
samples from a global perspective. These experimental re-
sults verify that each part of PCL is essential.

5 Conclusion
In this paper, we study few-shot learning with data corruption
which is a new and practical topic. To deal with the problem,
we propose the versatile and robust peer-collaboration learn-
ing (PCL) framework, which can plug in different few-shot
methods to extract valid knowledge from corrupted few-shot
training data. Through the peer-collaboration mechanism of
the two modules, PCL can automatically identify the impor-
tance of different samples for reliable model training, thus
mitigating the impact of data corruption. Experiments ver-
ify that the introduction of PCL can significantly improve the
performance and robustness of few-shot methods in various
data corruption scenarios. In the future, we will further study
PCL in theory and improve the versatility of PCL in practical
few-shot learning problems.
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